Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.233
Filtrar
1.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587472

RESUMO

The wound-healing process is a paradigm of the directed migration of various pools of stem cells from their niche to the site of injury where they replenish damaged cells. Two decades have elapsed since the observation that wounding activates multipotent hair follicle stem cells to infiltrate the epidermis, but the cues that coax these cells out of their niche remain unknown. Here, we report that Caspase-1, a protein classically known as an integral component of the cytosolic inflammasome, is secreted upon wounding and has a non-canonical role in the extracellular milieu. Through its caspase activation recruitment domain (CARD), Caspase-1 is sufficient to initiate the migration of hair follicle stem cells into the epidermis. Uncovering this novel function of Caspase-1 also facilitates a deeper understanding of the mechanistic basis of the epithelial hyperplasia found to accompany numerous inflammatory skin diseases.


Assuntos
Caspase 1 , Dermatite , Folículo Piloso , Células-Tronco , Cicatrização , Animais , Camundongos , Caspase 1/metabolismo , Movimento Celular , Dermatite/metabolismo , Dermatite/patologia , Cabelo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Inflamação/metabolismo
2.
J Transl Med ; 22(1): 336, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589876

RESUMO

Melanocytes are dendritic cells localized in skin, eyes, hair follicles, ears, heart and central nervous system. They are characterized by the presence of melanosomes enriched in melanin which are responsible for skin, eye and hair pigmentation. They also have different functions in photoprotection, immunity and sound perception. Melanocyte dysfunction can cause pigmentary disorders, hearing and vision impairments or increased cancer susceptibility. This review focuses on the role of melanocytes in homeostasis and disease, before discussing their potential in regenerative medicine applications, such as for disease modeling, drug testing or therapy development using stem cell technologies, tissue engineering and extracellular vesicles.


Assuntos
Melanócitos , Medicina Regenerativa , Pigmentação/fisiologia , Melaninas/fisiologia , Folículo Piloso/fisiologia
3.
Front Endocrinol (Lausanne) ; 15: 1361100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628581

RESUMO

Introduction: Melatonin can treat androgenetic alopecia in males. Goats can be used as animal models to study melatonin treatment for human alopecia. In this study, a meta-analysis of melatonin's effects on goat hair follicles was pursued. Methods: Literature from the last 20 years was searched in Scopus, Science Direct, Web of Science and PubMed. Melatonin's effect on goat hair follicles and litter size were performed through a traditional meta-analysis and trial sequential analysis. A network meta-analysis used data from oocyte development to blastocyst. The hair follicle genes regulated by melatonin performed KEGG and PPI. We hypothesized that there are differences in melatonin receptors between different goats, and therefore completed melatonin receptor 1A homology modelling and molecular docking. Results: The results showed that melatonin did not affect goat primary follicle or litter size. However, there was a positive correlation with secondary follicle growth. The goat melatonin receptor 1A SNPs influence melatonin's functioning. The wild type gene defect MR1 is a very valuable animal model. Discussion: Future studies should focus on the relationship between goat SNPs and the effect of embedded melatonin. This study will provide theoretical guidance for the cashmere industry and will be informative for human alopecia research.


Assuntos
Folículo Piloso , Melatonina , Animais , Humanos , Melatonina/farmacologia , Receptores de Melatonina/genética , Cabras/genética , Simulação de Acoplamento Molecular , Modelos Animais , Alopecia
4.
Environ Int ; 186: 108638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593689

RESUMO

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Assuntos
Alopecia , Apoptose , Microplásticos , Estresse Oxidativo , Poliestirenos , Pele , Junções Íntimas , Alopecia/induzido quimicamente , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Poliestirenos/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Folículo Piloso/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
5.
Lasers Med Sci ; 39(1): 104, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630175

RESUMO

The study aimed to explore the impact of a novel near-infrared LED (nNIR) with an extended spectrum on skin enhancement and hair growth. Various LED sources, including White and nNIRs, were compared across multiple parameters: cytotoxicity, adenosine triphosphate (ATP) synthesis, reactive oxygen species (ROS) reduction, skin thickness, collagen synthesis, collagenase expression, and hair follicle growth. Experiments were conducted on human skin cells and animal models. Cytotoxicity, ATP synthesis, and ROS reduction were evaluated in human skin cells exposed to nNIRs and Whites. LED irradiation effects were also studied on a UV-induced photoaging mouse model, analyzing skin thickness, collagen synthesis, and collagenase expression. Hair growth promotion was examined as well. Results revealed both White and nNIR were non-cytotoxic to human skin cells. nNIR enhanced ATP and collagen synthesis while reducing ROS levels, outperforming the commonly used 2chip LEDs. In the UV-induced photoaging mouse model, nNIR irradiation led to reduced skin thickness, increased collagen synthesis, and lowered collagenase expression. Additionally, nNIR irradiation stimulated hair growth, augmented skin thickness, and increased hair follicle count. In conclusion, the study highlighted positive effects of White and nNIR irradiation on skin and hair growth. However, nNIR exhibited superior outcomes compared to White. Its advancements in ATP content, collagen synthesis, collagenase inhibition, and hair growth promotion imply increased ATP synthesis activity. These findings underscore nNIR therapy's potential as an innovative and effective approach for enhancing skin and promoting hair growth.


Assuntos
Iluminação , Polifosfatos , Rejuvenescimento , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio , Trifosfato de Adenosina , Modelos Animais de Doenças , Folículo Piloso , Colagenases , Colágeno
6.
Lasers Med Sci ; 39(1): 92, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499897

RESUMO

Acne is a long-lasting inflammatory skin condition that impacts the sebaceous units of the hair follicles, affecting around 85-90% of the population. Due to the potential for permanent facial scarring and negative social consequences, as well as the limitations of conventional medications like drug resistance and difficulties following treatment plans, it's crucial to investigate non-pharmacological options for treating acne, among which radiofrequency(RF) shows distinct superiority. To assess the impact of RF in the management of acne vulgaris, we conducted a thorough examination of scientific literature (including clinical trials and scientific reviews) through electronic databases like MEDLINE and PubMed. Our analysis indicates that RF could be a viable substitute for acne treatment due to its notable effectiveness and minimal adverse effects.


Assuntos
Acne Vulgar , Humanos , Acne Vulgar/radioterapia , Acne Vulgar/tratamento farmacológico , Pele , Cicatriz/radioterapia , Folículo Piloso , Resultado do Tratamento
7.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534401

RESUMO

Wool is produced and controlled by hair follicles (HFs). However, little is known about the mechanisms involved in HF development and regulation. Sheep dermal fibroblasts (SDFs) play a key role in the initial stage of HF development. Analyzing the molecular mechanism that regulates early HF development in superfine wool sheep is of great importance for better understanding the HF morphogenesis process and for the breeding of fine wool sheep. Here, we show that two microRNAs (miRNAs) affect the development of HFs by targeting two genes that are expressed by SDFs. Meanwhile, the overexpression and inhibition of oar-miR-23b and oar-miR-133 in SDFs cells and cell proliferation, apoptosis, and migration were further detected using a CCK-8 assay, an Annexin V-FITC assay, a Transwell assay, and flow cytometry. We found that oar-miR-23b, oar-miR-133, and their cotarget genes TGFß2 and NOTCH1 were differentially expressed during the six stages of HF development in superfine wool sheep. Oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs and promoted the apoptosis of SDFs through TGFß2 and NOTCH1. oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs by jointly targeting TGFß2 and NOTCH1, thereby inhibiting the development of superfine wool HFs. Our research provides a molecular marker that can be used to guide the breeding of ultrafine wool sheep.


Assuntos
Folículo Piloso , MicroRNAs , Ovinos/genética , Animais , MicroRNAs/genética , Fibroblastos , Biomarcadores , Proliferação de Células
8.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542234

RESUMO

Fiber diameter is an important characteristic that determines the quality and economic value of rabbit wool. This study aimed to investigate the genetic determinants of wool fiber diameter through an integration analysis using transcriptomic and proteomic datasets from hair follicles of coarse and fine wool from Angora rabbits. Using a 4D label-free technique, we identified 423 differentially expressed proteins (DEPs) in hair follicles of coarse and fine wool in Angora rabbits. Eighteen DEPs were examined using parallel reaction monitoring, which verified the reliability of our proteomic data. Functional enrichment analysis revealed that a set of biological processes and signaling pathways related to wool growth and hair diameter were strongly enriched by DEPs with fold changes greater than two, such as keratinocyte differentiation, skin development, epidermal and epithelial cell differentiation, epidermis and epithelium development, keratinization, and estrogen signaling pathway. Association analysis and protein-protein interaction network analysis further showed that the keratin (KRT) family members, including KRT77, KRT82, KRT72, KRT32, and KRT10, as well as CASP14 and CDSN, might be key factors contributing to differences in fiber diameter. Our results identified DEPs in hair follicles of coarse and fine wool and promoted understanding of the molecular mechanisms underlying wool fiber diameter variation among Angora rabbits.


Assuntos
Folículo Piloso , Transcriptoma , Animais , Coelhos , Folículo Piloso/metabolismo , Fibra de Lã , Proteoma/genética , Proteoma/metabolismo , Proteômica , Reprodutibilidade dos Testes , Lã/fisiologia
9.
J Dermatol Sci ; 113(3): 130-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431439

RESUMO

BACKGROUND: "Curved hair" caused by acquired factors is considered to have adverse cosmetic effects, but the detailed mechanism behind curved hair remains obscure. OBJECTIVE: We attempted to clarify the causes of curved hair that appeared to have occurred via acquired factors. METHODS: Outer root sheath cells (ORSC) isolated from plucked human hair follicles were used to evaluate the expression of type IV collagen. Straight and curved hairs with hair follicle tissue attached were also collected from the same individuals and subjected to morphological, immunohistochemical, and gene expression analyses. RESULTS: The amount of type IV collagen increased upon inducing endoplasmic reticulum stress in ORSC. Meanwhile, in curved hair follicle tissue, the gene expression of type IV collagen decreased. In addition, the curved hair follicle tissue obtained from participants in their 30 s to 50 s had distorted shapes compared with that of straight hair from the same individuals. It was also observed that hair matrix cells based on multiple hair germs fused to eventually form a single hair follicle and hair shaft. In curved hair follicle tissue, KRT71 protein, a marker of inner root sheath differentiation, was unevenly distributed and there was elevated expression of Dickkopf-1 (DKK1) protein, an inhibitor of the Wnt signaling pathway. CONCLUSION: Our study revealed the fusion of hair matrix cells during hair follicle regeneration as a cause of acquired curved hair. We consider that such fusion causes hair follicle tissue to abnormally differentiate, resulting in asymmetric hair follicle shapes and curved hair.


Assuntos
Colágeno Tipo IV , Folículo Piloso , Humanos , Folículo Piloso/metabolismo , Colágeno Tipo IV/metabolismo , Cabelo , Diferenciação Celular
10.
Genomics ; 116(2): 110818, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431032

RESUMO

Sheep breeds with hair-shedding traits have many advantages over non-shedding sheep breeds, not only because of reduced shearing labor and feeding management costs but also because it reduces in vitro parasites and improves adaptability to summer heat stress. The wool of Dorper sheep naturally sheds in spring due to the periodic growth of hair follicles. CircRNAs primarily regulate the morphogenesis of hair follicles through the ceRNA mechanism. In this study, five 2-year-old Dorper ewes with extreme hair-shedding phenotype (S) and three Dorper ewes with non-shedding (N) phenotype were selected for subsequent analyses. For RNA extraction, skin tissues were collected on 27th September 2019 (S1, N1), 3rd January 2020 (S2, N2), and 17th March 2020 (S3, N3), which were then subjected to RNA-seq. RNA-seq technology revealed 20,185 novel circRNAs in the hair follicles of Dorper sheep. Among them, 1450 circRNAs were differentially expressed (DE). Clustering heatmap and expression pattern analyses were performed on DE circRNAs, which indicated 78 circRNAs with T pattern (Telogen, highly expressed in telogen), and the source genes for candidate circRNAs were further screened by functional enrichment analysis, which identified 13 crucial genes enriched in pathways associated with hair follicle development. Additionally, a ceRNA regulatory network comprising 4 circRNAs, 11 miRNAs, and 13 target genes was constructed. Overall, this study screened circRNAs that may be associated with the telogen phase of hair follicles in sheep, providing a relevant theoretical basis for wool shedding in sheep and for breeding Dorper sheep with automatic wool shedding.


Assuntos
MicroRNAs , RNA Circular , Ovinos/genética , Animais , Feminino , RNA Circular/metabolismo , 60414 , Folículo Piloso/metabolismo , Carneiro Doméstico/genética , MicroRNAs/metabolismo
11.
Tissue Cell ; 87: 102338, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428370

RESUMO

Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.


Assuntos
Folículo Piloso , Engenharia Tecidual , Humanos , Bioengenharia , Materiais Biocompatíveis
12.
ACS Appl Mater Interfaces ; 16(13): 15701-15717, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38507687

RESUMO

Although topical application of minoxidil is a widely used, FDA-approved therapy for androgenetic alopecia (AGA) treatment, it suffers from low bioavailability, the requirement for frequent long-term use, and side effects. With a similar structure as minoxidil, kopexil and kopyrrol are less toxic and have been commercialized, but show an inferior hair regeneration effect compared to minoxidil. Herein, we developed a hyaluronic acid (HA)-based dissolvable microneedles (MNs) delivery platform integrated with kopexil and kopyrrol coencapsulated nanoliposomes (KK-NLPs) to effectively and safely treat AGA. Facilitated by nanoliposomes and MNs, the encapsulated KK-NLPs performed efficient skin penetration and enhanced cellular internalization into human dermal papilla cells. Furthermore, within the target cells, the codelivered kopexil and kopyrrol show synergistic effects by orchestrating an upregulation in the expression of Ki67, ß-catenin, vascular endothelial growth factor (VEGF), and CD31. These molecular responses collectively foster cell proliferation, migration, and antioxidative effects, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Notably, the KK-NLPs-integrated MNs treatment group exhibits noteworthy enhanced hair regeneration in vivo, with identical or superior therapeutic effects at a much lower dosage than that of minoxidil. These results suggest the great potential of this kopexil and kopyrrol codelivery nanoliposomes-integrated MNs platform for AGA treatment in a safe and efficient way.


Assuntos
Minoxidil , Fator A de Crescimento do Endotélio Vascular , Humanos , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alopecia/tratamento farmacológico , Alopecia/induzido quimicamente , Alopecia/metabolismo , Cabelo , Folículo Piloso , Resultado do Tratamento
13.
Int J Pharm ; 654: 123963, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430952

RESUMO

Inflammation in hair follicles will reduce the effectiveness of minoxidil (MXD) in the treatment of androgen alopecia (AGA) caused by elevated androgen levels. To target multiple physiological and pathological processes in AGA, a novel natural bioactive compound modified transfersomes (MXD-Rg3@TFs) was prepared to replace cholesterol that may disrupt hair growth, with ginsenosides Rg3 (Rg3) that have anti-inflammatory effects on AGA. The effects of MXD, Rg3 and their combination on AGA were evaluated using dihydrotestosterone (DHT) induced human dermal papilla cells (DPCs), and the results showed that the combination of MXD and Rg3 can significantly promote the proliferation, reduce the level of intracellular ROS and inflammatory factors, and inhibit the aging of DHT induced DPCs. Compared with cholesterol membrane transfersomes (MXD-Ch@TFs), MXD-Rg3@TFs has similar deformability, smaller particle size and better stability. MXD-Rg3@TFs has also significant advantages in shortening telogen phase and prolonging the growth period of hair follicles in C57BL/6 mice than MXD-Ch@TFs and commercial MXD tincture. The prominent ability of MXD-Rg3@TFs to inhibit the conversion of testosterone to DHT and reduce the level of inflammatory factors suggested that Rg3 and MXD in MXD-Rg3@TFs have synergistic effect on AGA therapy. MXD-Ch@TFs with no irritation to C57BL/6 mice skin is expected to reduce the dose of MXD and shorten the treatment time, which would undoubtedly provide a promising therapeutic option for treatment of AGA.


Assuntos
Ginsenosídeos , Minoxidil , Camundongos , Animais , Humanos , Minoxidil/farmacologia , Minoxidil/uso terapêutico , Ginsenosídeos/farmacologia , Androgênios/uso terapêutico , Camundongos Endogâmicos C57BL , Alopecia/tratamento farmacológico , Folículo Piloso , Di-Hidrotestosterona , Colesterol
14.
Rev. argent. cir. plást ; 30(1): 72-73, 20240000. fig
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1551445

RESUMO

El microtrasplante capilar, método FUE, es la cirugía para la recuperación capilar que consta en la extracción de unidades foliculares con punches de distintos diámetros y longitudes, desde una zona llamada dadora, generalmente occipital y/o temporal aunque pueden utilizarse otras partes del cuerpo como barba, tórax, abdomen y pubis, para luego de seleccionarse y conservarse en forma adecuada ser implantadas en la llamada zona receptora. Tanto los avances en la técnica como en el uso de instrumental de última generación generan resultados mejores y más naturales, con una recuperación más rápida y menor daño de sus zonas dadoras.


Hair transplant, FUE method, is surgery for hair recovery that consists of the extraction of follicular units with punches of different diameters and lengths, from an area called the donor; usually occipital and/or temporal; although they can be used on other parts of the body such as beard, thorax, abdomen and pubes. After being appropriately selected and preserved, they are implanted in the so-called receiving area. Both advances in technique and in the use of cutting-edge instruments generate better and more natural results, with faster recovery and less damage to the donor areas


Assuntos
Humanos , Masculino , Feminino , Instrumentos Cirúrgicos , Transplante/métodos , Folículo Piloso/transplante , Alopecia/terapia , Cabelo/patologia
15.
Ther Deliv ; 15(3): 193-210, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449420

RESUMO

Alopecia areata (AA) is a kind of alopecia that affects hair follicles and nails. It typically comes with round patches and is a type of nonscarring hair loss. Various therapies are accessible for the management and treatment of AA, including topical, systemic and injectable modalities. It is a very complex type of autoimmune disease and is identified as round patches of hair loss and may occur at any age. This review paper highlights the epidemiology, clinical features, pathogenesis and new treatment options for AA, with a specific emphasis on nanoparticulate drug-delivery systems. By exploring these innovative treatment approaches, researchers aim to enhance the effectiveness and targeted delivery of therapeutic agents, ultimately improving outcomes for individuals living with AA.


Assuntos
Alopecia em Áreas , Doenças Autoimunes , Humanos , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/epidemiologia , Folículo Piloso , Unhas/patologia
16.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473791

RESUMO

Androgenetic alopecia is a highly prevalent condition mainly affecting men. This complex trait is related to aging and genetics; however, multiple other factors, for example, lifestyle, are also involved. Despite its prevalence, the underlying biology of androgenetic alopecia remains elusive, and thus advances in its treatment have been hindered. Herein, we review the functional anatomy of hair follicles and the cell signaling events that play a role in follicle cycling. We also discuss the pathology of androgenetic alopecia and the known molecular mechanisms underlying this condition. Additionally, we describe studies comparing the transcriptional differences in hair follicles between balding and non-balding scalp regions. Given the genetic contribution, we also discuss the most significant risk variants found to be associated with androgenetic alopecia. A more comprehensive understanding of this pathology may be generated through using multi-omics approaches.


Assuntos
Alopecia , Folículo Piloso , Masculino , Humanos , Genômica , Envelhecimento , Estilo de Vida
17.
Science ; 383(6687): eadi7342, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452090

RESUMO

Lineage plasticity-a state of dual fate expression-is required to release stem cells from their niche constraints and redirect them to tissue compartments where they are most needed. In this work, we found that without resolving lineage plasticity, skin stem cells cannot effectively generate each lineage in vitro nor regrow hair and repair wounded epidermis in vivo. A small-molecule screen unearthed retinoic acid as a critical regulator. Combining high-throughput approaches, cell culture, and in vivo mouse genetics, we dissected its roles in tissue regeneration. We found that retinoic acid is made locally in hair follicle stem cell niches, where its levels determine identity and usage. Our findings have therapeutic implications for hair growth as well as chronic wounds and cancers, where lineage plasticity is unresolved.


Assuntos
Células-Tronco Adultas , Plasticidade Celular , Epiderme , Folículo Piloso , Tretinoína , Cicatrização , Animais , Camundongos , Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/fisiologia , Plasticidade Celular/efeitos dos fármacos , Plasticidade Celular/fisiologia , Epiderme/efeitos dos fármacos , Epiderme/fisiologia , Folículo Piloso/citologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Rejuvenescimento/fisiologia , Técnicas de Cultura de Células , Neoplasias/patologia , Camundongos Endogâmicos C57BL
18.
Elife ; 122024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483447

RESUMO

The etiology of hair loss remains enigmatic, and current remedies remain inadequate. Transcriptome analysis of aging hair follicles uncovered changes in immune pathways, including Toll-like receptors (TLRs). Our findings demonstrate that the maintenance of hair follicle homeostasis and the regeneration capacity after damage depend on TLR2 in hair follicle stem cells (HFSCs). In healthy hair follicles, TLR2 is expressed in a cycle-dependent manner and governs HFSCs activation by countering inhibitory BMP signaling. Hair follicles in aging and obesity exhibit a decrease in both TLR2 and its endogenous ligand carboxyethylpyrrole (CEP), a metabolite of polyunsaturated fatty acids. Administration of CEP stimulates hair regeneration through a TLR2-dependent mechanism. These results establish a novel connection between TLR2-mediated innate immunity and HFSC activation, which is pivotal to hair follicle health and the prevention of hair loss and provide new avenues for therapeutic intervention.


Assuntos
Folículo Piloso , Receptor 2 Toll-Like , Humanos , Cabelo , Alopecia
19.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398550

RESUMO

ß-Nicotinamide mononucleotide (NMN) has shown promising effects on intestinal health, and it is extensively applied as an anti-aging and Alzheimer's disease therapeutic, due to its medicinal properties. The effects of NMN on the growth of mouse hair were observed after hair removal. The results indicated that NMN can reverse the state of hair follicle atrophy, hair thinning, and hair sparsity induced by dihydrotestosterone (DHT), compared to that of minoxidil. In addition, the action mechanisms of NMN promoting hair growth in cultured human dermal papilla cells (HDPCs) treated with DHT were investigated in detail. The incubation of HDPCs with DHT led to a decrease in cell viability and the release of inflammatory mediators, including interleukin-6 (IL-6), interleukin-1Beta (IL-1ß) and tumor necrosis factor Alpha (TNF-α). It was found that NMN can significantly lower the release of inflammatory factors induced by DHT in HDPCs. HDPCs cells are protected from oxidative stress damage by NMN, which inhibits the NF-κB p65 inflammatory signaling pathway. Moreover, the levels of androgen receptor (AR), dickkopf-1 (DKK-1), and ß-catenin in the HDPCs were assessed using PCR, indicating that NMN can significantly enhance the expression of VEGF, reduced IL-6 levels and suppress the expression of AR and DKK-1, and notably increase ß-catenin expression in DHT-induced HDPCs.


Assuntos
Mononucleotídeo de Nicotinamida , beta Catenina , Animais , Camundongos , Humanos , beta Catenina/metabolismo , Interleucina-6/metabolismo , Cabelo , Folículo Piloso/metabolismo , Di-Hidrotestosterona/metabolismo , Proliferação de Células , Estresse Oxidativo
20.
Sci Rep ; 14(1): 4709, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409197

RESUMO

Considerable global demand exists for the development of novel drugs for the treatment of alopecia. A recent report demonstrated that oxytocin promotes hair growth activity in human dermal papilla (DP) cells; however, its application in drugs or cosmetic products is challenging because rapid degradation and relatively large molecular weight prevent long-term topical administration on the scalp. Here, we examined cinnamic acid, a small molecule activator for oxytocin receptor (OXTR) expression. Treatment with cinnamic acid led to upregulation of OXTR and trichogenic gene expression in human DP cells. Furthermore, inhibition of OXTR with an antagonist, L-371,257, suppressed hair growth-related gene expression in DP cells. These findings suggest that cinnamic acid enhances the hair growth ability of DP cells via oxytocin signaling. Additionally, we tested the hair growth-promoting effects of cinnamic acid using hair follicle organoids in vitro and observed that cinnamic acid significantly promoted the growth of hair peg-like sprouting. These promising results may be useful for developing hair growth-promoting products targeting oxytocin.


Assuntos
Cinamatos , Folículo Piloso , Ocitocina , Humanos , Folículo Piloso/metabolismo , Ocitocina/farmacologia , Ocitocina/metabolismo , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Células Cultivadas , Cabelo , Organoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...